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Abstract-This paper reports theoretical and experimental results on unsteady heat and mass transfer 
from small spherical bodies for small Strouhal numbers. Experiments are done in a stream consisting of 
steady and unsteady components. Unsteady flows are generated by an acoustic resonance in a tube and 
fluctuate purely sinusoidally. In heat-transfer experiments in an air stream several spherical thermistors 
are used and the time-averaged Nusselt number is shown to be well correlated, both experimentally and 
theoretically, by means of Reynolds number with time-averaged velocity as its characteristic velocity and 
the ratio of velocity amplitude of unsteady component to steady component. 

Unsteady mass-transfer experiments are done by evaporation of small droplets of water and prophyl- 
alcohol in an air stream. The results are found to be represented by a similar correlating relation to that for 
heat transfer. A resonant oscillation of deformation of a droplet is observed due to surface tension and 
during this resonance the Sherwood number is found to increase proportionally to the unsteady component 

of the stream. 

NOMENCLATURE 

concentration [kg/m31 ; 
diameter of a sphere [m] ; 
diffusivity of vapor in the air [mz/h] ; 
surface area [m2] ; 
heat-transfer coefficient [kcal/m2h”C] ; 
mass-transfer coefficient [m/h] ; 
Nusselt number, hD/l ; 

Prandtl number, v/a; 
pressure [kg/m21 ; 
heat [kcal] ; 
gas constant [kgm/kg”K] ; 
Reynolds number, UD/v; 
Strouhal number, oD/U; 
Schmidt number, v/D, ; 
Sherwood number, kD/D, ; 
temperature [“K] ; 
time [h]; 
amplitude of the fluctuant velocity 

cm/h1 ; 
uniform velocity [m/h] ; 
velocity [m/h]. 

Greek symbols 
4 thermal diffusivity [m’/h] ; 

YT specific weight [kg/m31 ; 

8, dimensionless amplitude of the fluctuant 
velocity, U,f UO ; 

4 thermal conductivity [kcal/mh”C] ; 

V, kinematic viscosity [m”/h] ; 

PY density [kgh2/m4] ; 

0, surface tension [kg/m] ; 
w, angular velocity [l/h]. 

Subscripts 

;f ’ 
in the main flow; 
lead wire ; 

m, mean value between the surface and the 
main flow; 

0, steady term ; 

s, values under a steady state condition; 
4 values under an unsteady state condi- 

tion ; - 
, time-averaged values ; 

I 
7 fluctuant values. 

1. INTRODUCTION 

STUDIES of heat and mass transfer from a sphere 
and a circular cylinder have long been considered 
one of the fundamental problems in heat and 
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mass transfer. But the reports on heat and mass 
transfer from small particles are comparatively 
few. Experimental studies on this problem were 
made formerly by F&sling and Yuge, recently 
by Tsubouchi [ 11. 

All these studies were done under a steady 
state condition. Under an unsteady condition, 
it has been said that, in general, the heat- and 
mass-transfer rate increases, but systematic 
studies have never been done. Therefore, the 
purpose of this paper is to study the effect of an 
unsteady flow, which is composed of a uniform 
flow and a periodically fluctuating flow approxi- 
mated by a sinusoidal wave, on heat and mass 
transfer from small spheres. As the first step of 
this study, we experimentally and theoretically 
investigate the time-averaged heat- and mass- 
transfer rate from spheres in such a flow. 

Previous works on this problem were done 
by Zijnen [2], who vibrated a line wire of 5 n 
in the direction of the flow, by Ramachandran 
[3], [4] and by Bayley [5]. Their works were 
made for a fine wire and the experimental 
methods and treatments were various, but only 
particular cases were investigated. 

In this report, we use spherical particles 
and spherical liquid drops and investigate the 
effect of the fluctuant velocity field on heat and 

mass transfer and the associated phenomena 
In the experiment, we use thermistors in the 
heat-transfer experiment and water and prophyl- 
alcohol in the mass-transfer experiment. 

2. EXPERIMENTAL APPARATUS AND METHOD 

2.1 Experimental apparatus 
In this study to generate a large fluctuant 

velocity, we use an acoustic standing wave 
in a pipe as shown in Fig. 1. The apparatus is 
composed of a pipe system and a blower, 
which sends a uniform flow. The pipe and a 
reciprocating piston fitted on one end of the 
pipe, consist of the pipe system. The other end 
of the pipe is open and connected to the blower 
through the surge tank. 

When we vibrate the piston at the frequency 
of f= 3c/4L, (where c is the sound velocity 
and L is the length of the pipe), we can generate 
a standing sound wave which has the pressure 
nodes at the open end and at the point of 2L/3 
distance from ent entrance. If we open this 
point to the free air, there is no effect on the 
sound wave. Therefore, we make a hole at the 
2L/3 point and send in the steady uniform flow 
from the blower at the open end of the pipe and 
out at the 2L/3 point. By superposing the 

‘-W <lower f=%- f=23N70c/s 

Pressure amplitude 

FIG. 1. Experimental apparatus. 
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uniform flow to the standing sound wave, we 
can get the flow as shown in Fig. 2 in the vicinity 
of the open end of the pipe. It can be seen that 
the fluctuant velocity component is exactly 
approximated by the sinusoidal wave. The 
piston is vibrated by a crank mechanism and 
the frequency is changed by a speed change 
gear. The resonant frequency can be changed 
by varying the total length of the pipe and the 
amplitude of the fluctuant velocity can be 
changed by the piston stroke. In this experiment, 
we vary the total length of the pipe from 3.5 
to 11 m and the piston stroke from 1 to 12 mm. 
The frequency range in the experiment is 
23-70 c/s and that of the fluctuant velocity 
amplitude is below 6 m/s. The maximum point 
of the velocity amplitude is at the open end and 
exit of the flow. We set the measurement 

*>I 

u=L@+C cosot~*U,tU, cos&lt 

FIG. 2. Velocity fluctuation. 

section at the open end, because its velocity 
distribution is almost uniform in the cross 
section except in the neighborhood of the pipe 
wall. The time-averaged velocity is measured 
by an orifice-meter which is between the surge 
tank and the blower, and the fluctuation of the 
velocity is measured by a hot wire anemometer 
of constant temperature. A part of the flow from 
the blower is divided and lead through the valve 
to the hygrometer to measure the water vapor 
pressure of the flow. 

2.2 The experiment on heat tra~f~ from 
spherical particles 

The sketch of the measuring part for heat 
transfer is shown in Fig. 3. We use bead type 
thermistors as tested spheres and it is held at the 
center of the pipe by the lead wires from the 

IT I--- Hot wire anemometer 

FIG. 3. Test section for heat transfer. 

pipe wall. We measure the electric power input 
to a thermistor and calculate the total heat input 
and the surface temperature. The used ther- 
mistors are neither perfect spheres nor similar 
figures to each other, therefore as a reference 
length, we adopt the diameter of a sphere with 
the same surface area as the sample. The 
thermistors used in this experiment are shown 
in Fig. 4. 
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D= I.46 mm F=6.70mm2 

0=0.79 F=l.94 

0=0.73 Fa I.67 

D= 0.245 F-0.189 

FIG. 4. Thermistors used in the experiment, 

2.2.1 The heat-transfer coefficient. The heat- 
transfer coefficient h is defined as follows : 

Qc = hf’(Tv - T,) (1) 

where Qc is heat transferred by convection, F is 
the surface area of the sample, and T,, T, are 
the temperatures of the surface and the main 
stream, respectively. The heat transferred by 
convection is obtained by subtracting the heat 
by conduction from the lead wires and the 
radiant heat of the surface from the electrical 
heat input. The surface temperature is calcu- 
lated from the measured electrical resistance 
of the sample. 

When we define the time-averaged term and 
the fluctuant term of the heat-transfer co- 
efficient as h and h’ and those of the surface 
temperature as ‘ii, and T’, the heat transferred 
by convection Qe is expressed in the following 
form: 

Qc = (I; + h’) (T, + T’ - TJ F. (2) 

To measure the mean value of Qc, we take the 
time-average of Eq. (2). Then : 

Q, = {@‘ii, - T,) + h’T’} F. (3) 

In this study, the fluctuation of the surface 
temperature almost is negligible as the time- 
constant of the sample is very large, so h is 
obtained from the following equation : 

0, = h(Fii, - T,) F. (4) 

2.2.2 The heat transferred by convection. The 
heat transferred by convection Qc is obtained 
from the following equation : 

Qc= QT-(QI+ QR) (5) 

where Q, is the heat transferred by conduction 
from the lead wires, QR the heat transferred by 
radiation from the surface of the sample and 
QT the total heat input. 

The total Joule heating QT is described as : 
QT = 0.86 EI (6) 

where I is the electric current and E is the voltage 
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between both ends of lead wires. QR is calculated 
as follows : 

QR = C,. e(T$ - Tz) (7) 

where C, is 488 x lo-’ kcal/m2h”K and the 
emissivity e of the surface is taken as 0.5. 
Ql is calculated by the following heat balance 
equation : 

1 aT, a2T, 

cuat+ax2 I 

where T is the temperature at an arbitrary 
point of the lead wire, al the thermal diffusivity, 
1, the thermal conductivity, r0 the electrical 
resistance per unit length at WC, a the coefficient 
of resistance, d the diameter of the lead wire 
and hi is the heat-transfer coefficient of the lead 
wire. The velocity of the flow is described as 
follows : 
24 = UC) + u1 cos cot = Uo(l + & cos wt). (9) 

The lead wire is fine, so the heat-transfer 
coefficient h, may be expressed as follows : 

Ia, = 0841 i [Re,,( 11 + E cos CD~/)]~‘~~ (10) 

= hr + h,, cos ot 

where Real is Reynolds number and the sign of 
the absolute value means that h, is independent 
of the direction of the velocity. Neglecting the 
non-linear term and making an approximate 
calculation, the following equation is obtained : 

cl’: -~2 Xe-kP 

+ 16,~; 3 
(11) 

where & = 4ii,/A,d, pf =Yh,,/A,d. 
Ignoring the small terms of equation (1 l), 

the heat loss from the lead wire QtU is expressed 
as follows : 

On the other hand, the heat transferred by 
conduction from the lead wire without the 
fluctuant velocity Qls is expressed as : 

where ,u~ - 2 - 4h,/A,d and h, is the heat-transfer 
coefficient for a steady flow. Finally, Qlv is 
represented as follows : 

Qlv = Q&Ii + ECOSW~~)~‘~~]~. (14) 

2.2.3 The surface temperature of the sample. 
There is a correlation between the electrical 
resistance and the temperature of a thermistor 
and this relation is obtained from the measure- 
ment in a constant temperature box for a 
uniform internal temperature of a sample. But 
in an experiment of unsteady heat transfer, 
the temperature of the sample is not uniform 
because of a heat flux to the surface, and the 
temperature obtained by the use of the measured 
correlation is expected to the temperature of the 
core region of the sample. Therefore, we have 
to calculate the internal temperature distribution 
and the surface temperature by assuming the 
Joule heating distribution inside the sample. 
Assuming the spherical symmetry of the heating 
source, we may define the temperature distri- 
bution as the function of the radius and the time. 
If the distribution of the heat production q(r) 
is independent of the time, the heat balance 
equation inside the sample is obtained as 
follows : 

--__=-- (15) 

where a, and 4 are the thermal diffusivity and 
the thermal conductivity of the sample, re- 
spectively. So as to take into account the effect of 
the unsteady state, we assume that the heat- 
transfer coefficient h and the surface temperature 
T, are given as follows : 

h=h+h,cosot -I 

T,- T,= TO+ T,cos(ot+8) j 
(16) 
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where 6 is the phase difference. Assuming a 
quasi-steady state as stated later, the heat 
transferred from the surface is denoted in the 
following form : 

Q, = {ti& + +h,T, cos6) 

+ (h, T, + t;Tr cos 6) cos ot 

- tiT, sin 6 sin OX} F (17) 

where F is the surface area of the sample. 
Dividing T into the steady component O,, 
and the unsteady component 0,; then, for OO 
and Or, the following equations are obtained: 

(18) 

(19) 

The boundary conditions at r = D/2 are ex- 
pressed as : 

64, = TO + T,, 

-A =hT +“hTcos6 0 2 11 

0, = Tl cos ot, 
(20) At 2R = D, 

Tl cos 6 = t {enR cos (nR + A) 

_ e-“R cos(nR - A)} 

Taking into consideration the heating character- 
istics of the thermistor, q(r) is assumed as follows : 

q(r) = $ sin g r 

Tl sin 6 = % {enR sin (nR + A) 

(21) +e -nR sin (nR - A)} 

= (h, To + I;T, cos 6) cos wt 

- hT, sin 6 sin wt. 
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where A, is an arbitrary constant. 

271 
&IO = To + c + g2i sin D; (22) 

f 

where 

A, = & {hTo + +h,T, cos S} F. (23) 

From equation (19), 

A 
0, = -[e”‘cos(wt + 

r 
_ epnr cos(ot - nr 

nr + A) 

+ A)], 

n= -YE 
J 24 

(24) 

The constants A, A and 6, are obtained by 
following simultaneous equations, which are 
obtained from the boundary conditions. 

hITo + iiT cos 6 = X, - tiT, sin 6 = Y 

(25) 

X = 

[ 

Q(&‘R _ e_nR) cos nR - ‘$4 {(enR + eenR) cos nR - (enR - eenR) sin nR} 1 cos A 

nlA 
+ -‘~(e”R+e-“R)sinnR-~{-(e”R-e-“R)sinnR 

[ R2 
- (enR + emnR) cos nR} 1 sin A 

Y= -~~(enR+e-nR)sinnR-n~{-(enR+e-nR)cosnR-(enR-c-nR)sinnRJ cosA 
[ 1 

IA - +(enR - e -“R) cos nR - y{(enR + epnR) cos nR - (enR - eYnR) sin nR} 
1. 

sin A 

(26) 

. (27) 
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Assuming a quasi-steady state, the maximum 
values of 1; and 6 within the region of this 
experiment are 

7-i = 0.17 T,, 6 = 105”. (28) 

Therefore, the effect of the second term of 
equation (3) is less than 2 per cent and neglibible. 
Denoting the core temperature of the sample 
as T, the relation between T, and To is found 
from equation (22). Using the value of T, 
obtained from the resistance, we can get the 
time-averaged surface temperature T, as : 

1 

T - T, ( 1 I+!!! l 
2;1, = E (29) 

For the steady state : 

1 -_ 
Tc - T, 

(30) 

where h, is h for u = U,. Using equation (42) 
resulted from this experiment, the relation 
between h, and li is expressed as follows : 

where a0 is the value dependent on E only. 

2.3 The experiment of mass tru~f~~o~ liquid 
drops 

In the case of mass transfer, we need to get 
the mass flux of the evaporation and the con- 
centration of the vapor molecule at the surface, 
corresponding to the heat flux by convection 
and the surface temperature. The apparatus 
for mass transfer is shown in Fig. 5. A liquid drop 
is fixed at the center of the pipe by the 30 p 
Cu~onst~t~ the~ocouple. The vapor con- 
centration on the drop’s surface is obtained by 
measuring the temperature of the liquid drop 
by a thermocouple. There are two windows, 
one over and the other below the liquid drop. 
The variation of the diameter with time is 
measured at regular intervals by a photo- 
microscope. A stroboscope is used to light the 
drop. 

l-r r- Hot wire onemomstsr 

I o-Droplet 
I 1 

10‘1’ 
/ 

Stroboscope 

FIG. 5. Test section for mass transfer. 

In this experiment, water and prophyl- 
alcohol are used as liquid and each physical 
constant is obtained from the International 
Critical Tables. The liquid drop is not a perfect 
sphere but can be suffkiently treated as a sphere. 
Therefore, we use the average diameter as the 
reference length. An example of the variation 
of the liquid drop diameter with time shown in 
Fig. 6. 

2.3.1 The mass-transfer coejicient. The mass- 
transfer coefficient k is generally defined as 
follows : 

I, = kF(CO - C,,) (321 

where I, is the flux from the drop, F the s&ace 
area and Co and C, are the ~n~ntrations on 

“E 
E 

N- ‘2.0 - 
9 

I.01 I I I I I 
0 2 4 6 6 IO 

t, min 

FIG. 6. Variation of liquid drop diameter with time. 
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the surface of the drop and in the main flow, 
respectively. Assuming that the vapor can be 
treated as an ideal gas and the temperature 
difference between the surface of the sample 
and the main flow is small, then Co = P,/RT, 
and C, = P,JR’I;, are calculated from the 
pressure of the main flow and PO at the surface 
of the sample, while R is the gas constant of the 
vapor and T, the mean absolute tem~rature 
between the main flow and the surface. If D 
is the diameter of the liquid drop and y is the 
specific weight of the liquid, we have 

I,= -d ;Djy /dt 
( J 

Substituting these equations into Equation (32), 

the mass-transfer coefficient k is expressed as 
follows : 

(33) 

Total pressure P around the liquid drop remains 
constant, so the pressure distribution of the air 
is opposite to that of the liquid vapor. The liquid 
drop supported by the thermocouple is not a 
perfect sphere, so we must chetk this effect in 
the calculation of the mass transfer coefficient. 
Regarding the shape of the liquid drop as a 
rotating ellipse and varying the ratio of the 
each axial lengths u/b under a constant volume 
condition, the variation of the mass transfer 
coefficient is within 1Q per cent for a/b between 
0.8 and 1.2. When the liquid drop is not under a 
resonance condition, as denoted later, a/b 
in this experiment is almost 1.0, so the effect of 
it can be ignored. 

In the case of mass transfer as well as heat 
transfer, the time-averaged value of equation 
(33) is important, Then the time-averaged 
mass-transfer coefficient is obtained as follows : 

(34) 

2.3.2 The partial pressure of the liquid vapor 
in the mainjlow and at the surface of the liquid 

drop. It is necessary to know the partial pressure 
of the liquid vapor at the surface of the drop and 
that in the main flow. Vapor is in the saturated 
condition at the surface, therefore, the vapor 
pressure at the surface depends only on the 
surface temperature. The liquid drop is supported 
with the two lead wires of the thermocouple 
and changing the diameters of the wires, we get 
the same temperature, so it is known that the 
temperature distribution inside the liquid drop 
is almost uniform. 

This phenomenon can be explained by the 
existance of the convective flow inside the liquid 
drop. Therefore, the temperature measured by 
the the~ocouple fixing the liquid drop is 
used as the surface temperature of the drop. 

The vapor pressure in the main flow is as- 
sumed to be zero for prophyl-alcohol, but for 
water we must measure it accurately, and the 
following method is used. Ten pairs of Cu- 
Cons~nt~ thermocouple of 100 n are con- 
nected to each other in series on a mica plate 
with a 0.2 mm thickness and one end of the 
thermocouples is wet by covering with gauze and 
the other is dry and exposed to the air flow. 
When the dry and wet bulb temperature are 
described as 8 and 8,, respectively, the vapor 
pressure in the air is calculated from the 
Sprung’s equation : 

P, = _p, - AP(fl - &J/755 (35) 

where P, (kg/m’) is the saturated vapor pressure 
at the temperature @,,,(“C) and P (kg/m’) is 
the total pressure. The velocity is more than 
3 m/s, so we adopt A = 05. 

3. THE EXPERIMENTAL RESULTS 

We transform the experimental results into 
nond~ensional forms. For heat and mass 
transfer in an unsteady flow, dimensionless 
transfer coefficients are generally expressed as : 

Nu = f(Reo, Pr, S, E) (36) 

Sh = f (Re,, SC, S, E) (37) 

where the Nusselt number is Nu = hD/;1, the 
Reynolds number Re, = UOD/v, the Strouhal 
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number S = wD/U,,, the ratio of the fluctuant 
velocity component to that of the steady one 
E = U1/UO, the Sherwood number Sh = kD/D,, 
the Schmidt number SC = v/D, and the Prandtl 
number Pr = V/CL. In this experiment the Prandtl 
number is 0.72 for the air and the Schmidt 
number is 0.60 for water and 1.60 for prophyl- 
alcohol. The physical properties are used at the 
average temperature T, = (T, + To)/2 in equa- 
tions (36) and (37). 

3.1 The experimental results for steady states 
In order to make sure of the accuracy of this 

experimental method, we first make experi- 
ments under a steady state condition. These 
results are shown in Fig. 7. We take the value 

Nu, -2.0=0.55 P:‘3Re”2 

Sh, - 2.0 =0.55 Sc”3Re”2 

the following emperical formula for these results : 

Nu, = 2.0 + 0.55 Pr*Re$ 

Sh, = 2-O + 0.55 SC* Re$. 1 
(38) 

3.2 The experimental results for unsteady states 
We make the experiments for an unsteady 

state condition following the experiments for 
the steady state condition. As the velocity u 
varies as 

u = uo + u, cos ot = Uo(l + & cos ot), 

we use the Re number based on the time-averaged 
velocity U as the reference velocity. The relation 
between Re and Re, = U,D/v is expressed as 

co cr, 

30 
2 l Thermistor 

5- 0 Water 

0’ 
0 Praphyl -alcohol 

FIG. 7. Steady experimental results for heat and mass transfer from spheres. 

Nu, or Sh,, as the vertical axis and the value follows: 
Pr*Re$ or Sc*Rea as the horizontal axis. These n 
experimental results coincide very well with 
those of Ranz and Marshall [6] and Tsubouchi Re= Re, i 11 +ecos0\d0 - 

[l] made by a similar method. As it is well known 
[s 1 

0 

Re,bi (39) 

that the Nusselt number and the Sherwood where the absolute value inside the integral 
number are 2-O for the small Re region, we take sign means that heat transfer is independent 
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of the velocity direction. The value of b, is r. is the angle at the point where the velocity 
given by changes its sign and is given by 

E <l, b; = 1 1 

E > 1, bi = i sin-’ f + J(s2 - 1) . 
[ 11 

‘40) 
r. = n + sin-‘-. 

2 E 

Replacing Reo with E by using equation (39), 
In the region where the S number is very small, equation (42) is expressed as follows : 
at every moment the steady state is considered 
to be instantly reached, i.e. it may be assumed Nu, - 2 = inz+$ (45) 
to be a quasi-steady state. Then, the instant- 0 

aneous Nu number Nu”i is expressed by use 
of the equation for the steady state as follows : 

?% is obtained from the following equation by 
using equation (38) for the steady state : 

NuUi - 2 = mRe$() 1 + E cos wt/)+. (41) Nu-2=mRe+. (46) 
Then, the time-averaged Nu number is given by 
Nu, - 2 From equations (45) and (46) : 

= mReif i ((1 + ecose()+dl3 

rl 1 Nu, - 2 a, ___=- 
Nu - 2 b, (47) 

= mReha, 
(42) where a, and b, are given by equations (43) 

where the value a, is calculated from the follow- and (40), respectively. In the case of mass 
ing equation. 

E < 1, a, = 

e=l, a,= 

E > 1, a, = 

transfer, similar analysis can be adopted. By 

l+ 
c 

(_ 1y- 1 

(2K) ! 22K 
(4K - 3) ! ! cZK “;, :I ! ! 

. . 
K=l 

2,/(E - 1) 
- 

71 
K=l J 

where 

J=- 
sin z,(K - r) 

(K-r) + $(:-?). 
r=o 
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replacing Nu, and % of equation 
Sh, and % respectively, we obtain 

(47) with 

In Fig. 8 the experimental results of heat transfer 
from sphere are shown, where the horizontal 
axis is E and the parameter is SRe,. No variation 

I 
JciReo) 

0 7.6 . 2.1 
l 6.2 A O-7 

I I I 1 I 
0 I.0 2.0 30 40 

6 

FIG. 8. Unsteady heat transfer with uniform velocity. 

of experimental values with SRe, can be seen. 
The solid line shows the theoretical value ex- 
pressed by equation (47) which is calculated on 
the assumption of the quasi-steady state. When 
E increases, a,/b, in equation (47) tends closer to 
a constant value. At the limiting case when 
E 2 co, we have no steady component and 
Nu, is given by the following equation from 
equation (47) : 

Nu, = 2 + 0*478Req (48) 

The results are shown in Fig. 9 where the open 
circles show the measured results for the perfect 
sinusoidal waves, on the other hand, the solid 
circles are the results for the waves disturbed 
near the maximum amplitude, when the increase 
of the velocity amplitude brings the high fre- 
quency waves. Thus in the perfect sinusoidal 
wave, the theoretical values and the experi- 
mental ones coincide very well, so the assump- 
tion of the quasi-steady state is valid in this 
experiment. When we have only the fluctuant 
velocity component, it is theoretically proved 
that from the stand point of the analysis of flow 
and heat transfer the case of the fluctuant flow 

II 
IO 

I I I 
50 100 500 

% k-0~) 

FIG. 9. Unsteady heat transfer without uniform velocity. 

field is the same as that when the flow is stopped 
and the sample is in oscillation. The results of 
our analysis coincide well with the measured 
results using the fine vibrating wire by Mabuchi 
[7], when the effect of natural convection is 
negligible. The detailed study about it will be 
reported in our next paper. 

The results of mass transfer from a liquid drop 
are shown in Fig. 10. The solid line is calculated 
value using the assumption of a quasi-steady 
state. The effect of the SC number is not seen. 
As the oscillation of the liquid drop becomes 
intense for E > 1, the accurate experimental 
results are not obtained. 

An accurate analysis of the effect of the velocity 

I.1 

t 

S 
0 00 - 0.2 
0 0.2 - 0.4 
0 0.4 N O-6 
A 0.6 - 0.6 

OooA Water 
4-m. orophyl alcohol 

FIG. 10. Unsteady mass transfer with uniform velocity. 



582 YASUO MORI, MIKIO IMABAYASHI, 

fluctuation on the time-averaged Nu number 
has never been done. However, the local Nu 
number NuUx in an unsteady state along the 
surface of a body is written in terms of Nu 
number in a steady state, as follows for 
& < 1,s < 1: 

Nu,x = Nu,,[l + O(E’) + 0(c2S;) 

+ 0(&4) + . . . .] (49) 

where X is the distance from the stagnation 
point along the surface, Sx = oD/V(X) is the 
local Strouhal number, E is non-dimensional 
amplitude of the fluctuant velocity and V(X) 
the velocity outside the boundary layer at 
X . V(X) is expressed as follows: 

&= cl(;)+ C’($.... (50) 

Within the Re number region of this experiment, 
V is approximated by the first term of equation 
(50), so Sx is written as follows : 

WD 1wD S 
s,=~ic,u,=c, (51) 

where C, is equal to 3.0 for the sphere. In this 
experiment, Sx is smaller than 0.2, therefore, 
the terms containing S, of equation (49) are 
negligible. This is the reason why the experi- 
mental values are independent of Strouhal 
number and almost agree with the theoretical 
value calculated under the assumption of the 
quasi-steady state. 

KUNIO HIJIKATA and YUZO YOSHIDA 

12 0 
t: 

IO mm 

FIG. 11. Droplet transformation in resonant state 

4.1 The natural frequency of the liquid drop 
We take an origin of a co-ordinates at the 

center of the gravity of the drop shown in Fig. 12. 
We assume that the velocity potential 4 varies 
in the following sinusoidal way of angular 
velocity 0. 

FIG. 12. Model of transforming vibration of droplet. 

4. THE VIBRATION OF THE LIQUID DROP 

The experimental results of mass transfer 4 = [x2 - $(y’ + z’)] a cos ot. (52) 
from liquid drops are obtained under the con- 
dition that the liquid drop is spherical. At a When x0, y,, z. are the coordinates of the surface 
certain frequency of the fluctuant velocity, a in the case of no vibration, the velocity and the 
liquid drop makes a transforming oscillation displacement in x, y, z direction are expressed as : 
as shown in Fig. 11. The liquid drop has a 
natural frequency of transforming vibration 
caused by surface tension in a gas or in a different 

u=2=2axcosot=g 
ax dt (53) 

liquid. It seems that the liquid drop shown in 
Fig. 11 makes a resonance of the natural fre- 
quency with that of the fluctuant velocity. 

x = x0 exp (54) 
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(55) 
where p is the density of the liquid. Expanding 
equation (64) in power series and taking the 
largest term, T1 is given by 

(56) T ~ 4nR~pa2cos2 wt 
1 * 

5 
(65) 

w=-= -azcoswt=- 
dt 

z I:,.xp (- isin wt[ 

(57) As T1 + I/ is constant, the time derivative 
d( T1 + V)/dt vanishes. Then the natural angular 
velocity of natural transforming vibration of the 

(58) liquid drop is given by the following equation: 

By using the relation ; xi + yi + zg = Rg and 
replacing (a/w) sin wt = g(w), from equations 
(54), (56) and (58), the following equation is 
given : 

(60) 

2 
Z2 

$+s+?=R;. (59) 

In order to obtain the potential energy due to 
the surface tension, we calculate the surface 
area F of the liquid drop from equation (59). 
By making the transformation of the variables 
below, 

x = R, ezg sin cp, q = R,emgcoscp 

the surface area is given by : 

(32 =80 
I &’ (66) 

If one end of the liquid drop is fixed, the 
velocity of the x direction is equal to equation 
(53) added to the velocity of the center of the 
gravity and is given as : 

u’ = 2(r sin cp + R,) e2% cos wt. 

By making the same calculation as before, the 
kinetic energy in this case is expressed as follows : 

__ 

Then, the angular velocity of the natural vibra- 
tion is given by 

TI = 

52nRzpa’cos’ wt 

15 . (67) 

ni2 
F = 2rc j 

- n/2 

Ri eg J(cos’ rp + ee6g sin2 cp) 

x coscpdq 

= 2& eg ee3g _ ‘m;jF e:,r6g) 1 . (61) 

The deformation of the liquid drop from the 
sphere being small, the potential energy V 
due to the surface tension cr is given as follows: 

V = crF + 47rR$r[l + ;g’]. (62) 

The kinetic energy of the liquid drop T1 is 
represented as : 

T’ = f j (u2 + v2 + w’)dxdydz 
2,, 

(63) 

2npa’R; cos’ wt 
= 

15 
[2e-2g + 4e4g] (64) 

1.85 cr 14.8 cr 
w:,=-_=__, 

R: P D3 p 
(68) 

In the experiment of mass transfer for an 
unsteady flow, the diameter of the drop @creases 
with time even in a resonance state. Therefore, 
we get the relation between the mean diameter 
before and after the resonance state and the 
frequency of the vibration of the drop, and show 
it in Fig. 13. The solid line is the calculated value 
by equation (68). The difference of the experi- 
mental values and the theoretical values is about 
ten per cent. If we think the fact that in the theory 
the effect of the supporting wires is neglected, 
that is, the liquid drop is assumed to be sup- 
ported at one point, the agreement between the 
theory and experiment is considered to be 
satisfactory. 
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3.0 

h. Analytical result 

L2,0 K 

I Experimental results 

I.01 I I I 
300 400 500 

w, I/s 

FIG. 13. Frequency of resonant vibration of droplet. 

4.2 The mass-transfer coefjcient at the resonance 
state 

The increase of the average mass-transfer 
coefficient is obtained when the liquid drop 
makes the resonant transforming vibration 
stated above. These results are shown in Fig. 14. 
The horizontal axis is &Re, = U,D/v (U, is 
the amplitude of the fluctuant velocity), so 
called the Re number of the vibration, and the 
vertical axis is represented by a&,. The results 
show that a&, is independent of the Re 
number Re, and increases proportionally to 

sRe,, i.e. the Re number of the vibration in 

FIG. 14. Unsteady experimental results for mass transfer 
from resonating droplets. 

contrast with the non-resonance state. This is 
due to the fact that the flow around the liquid 
drop is changed and the surface area of the drop 
increases by the vibration of the drop. 

5. coNcLusIoN 

This paper makes the experimental and 
theoretical studies on heat and mass transfer 
coefficients from small spheres for an unsteady 
flow, in which the velocity u is vibrated as 
u = 1/,(1 + E cos wt) and the following con- 
clusions are obtained : 

(1) The experimental results of the time- 
average Nu number of heat transfer for the 
unsteady flow coincide well with the calculated 
values under the assumption of the quasi- 
steady state. In this experimental region of the 
Strouhal number S, there is no variation of the 
Nu number by the S number, and the Nu 
number only depends on the Re number taking 
the time-average velocity as the reference and 
the dimensionless velocity amplitude E. This 
relation can also be adopted in the case where 
there is no uniform flow, only the fluctuant 
velocity. The time-averaged Nu number Nu, 
is generally smaller than the Nu number fi of 
steady heat transfer for the time-averaged 
velocity u. When the amplitude of the fluctuant 
velocity is equal to the uniform velocity, 
(Nu, - 2)/(&% - 2), (= a&,) is the minimum 
value 0.900, and when there is no uniform flow 
and only the fluctant velocity, it is 0*958. 

(2) The Sherwood number for mass transfer 
from the liquid drop of water or prophyl- 
alcohol has the same relationship as that of the 
Nu number, it only depends on Re, and E. 

(3) It is theoretically and experimentally 
verified that the transforming vibration of the 
liquid drop yielded during the experiment under 
the unsteady state condition is caused by the 
resonance; i.e. the coincidence of the natural 
frequency of the liquid drop due to the surface 
tension with the frequency of the fluctuant 
velocity. Also, in such a case, the mass-transfer 
coefficient is discovered to increase with the 
Re number of the vibration. 
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R&u&-Ce.t article expose les rbultats theoriques et experimentaux sur le transport de chaleur et de 

masse instationnaite 21 partir de petits corps sphtriques pour de petits nombres de Strouhal. Des experiences 
sont faites dans un Qoulement ayant des composantes permanente et instationnaire. Les ecoulements 
instationnaires sont engendrb par une resonance acoustique dans un tube et fluctuent dune facon pure- 
ment sinusoidale. Au tours d’experiences de transport de chaleur dans un Qoulement d’air, plusieurs 
thermistances spheriques sont utilisees et l’on montre que la moyenne temporelle du nombre de Nusselt 
est bien correlte, a la fois exptrimentalement et thtoriquement, au moyen du nombre de Reynolds base 
sur la moyenne temporelle de la vitesse et du rapport de l’amplitude de vitesse de la composante instation- 
naite a la composante stationnaire. 

Les experiences de transport de masse instationnaim sont effecttrees par evaporation de petites goutelettes 
d’eau et d’alcool propylique dans un ecoulement d’air. On trouve que les r&Rats sont represented par 
une correlation semblable a celle du transport de chaleur. On observe une oscillation resonante pour la 
deformation d’une gouttelette due ii la tension superficielle et l’on trouve que pendant cette resonance le 

nombre de Sherwood croft proportionnellement a la composante instationnaim de l%coulement. 

Zusammenfassung-Dies Arbeit berichtet iiber theoretisch und experimentell gewonnene Ergebnisse 
bei instationlrem W&me- und Stofftibergang von klemen kugeligen Kiirpem bei kleinen Strouhal-Zahlen. 
Die Experimente wurden in einer Stromung mit station&n und instationlren Komponenten durchgeftihrt. 
Die rein sinusfirmig schwingende instationlre Striimung wurde durch akustische Resonanz in einem 
Rohr hergestellt Bei den Wiirmeiibergangsexperimenten in emem Luftstrom wurden kugelige Thermi- 
storen verwendet; fib die zeitlich gemittelte Nusseltzahl ergibt sich sowohl theoretisch als such experimen- 
tell eine klare Abhangigkeit von der Reynolds-Zahl, gebildet mit der zeitlich gemittelten Geschwindigkeit, 
und von dem Vertiltnis der Amplitude der instationlren Geschwindigkeit zu deren stationgrem Anteil. 

Die instationlren Stofftransportversuche wurden durch Verdampfen kleiner Wasser- und Prophyl- 
Alkoholtriipfchen in Luft durchgeftihrt Es zeigte sich, dass sich diese Ergebnisse in einer dem Warmetiber- 
gang iihnlichen Beziehung darstellen lassen. Dabei wurde eine Deformation der Tropfchen nach einer 
Resonanzschwingung beobachtet, die durch die OberflHchenspannung verursacht war. WLhrend dieser 

Resonanz w%hst die Sherwood-Zahl proportional dem instationaren Anteil der Stromung. 

AEBOTarpuI-R CTaTbe npHBORRTCR TeOpeTKYeCKKe B 3KCnepKMeHT3JlbHbIe p33yJIbTaTbl n0 
KecTanaoHapHomy Tenno-a KacconepeHocy 0T He6OnbmUX c$iepasecKkix Ten npB Kanbrx 
3H3=K?HUfiX KpBTepHR CTpyX.%‘lK. OnbITbZ IIpOBO~BnKCb B nOTOKe, COCTORmeM K3 CTauUOHap- 
HOI’0 H HeCTanHOHZIpHOl’O KOMIIOHCHTOB. HeCT3nKOHapHb.m IIOTOKB t’eHepHpOBaJIKCb C 
nOMOIl&bio aKyCTU’4eCKOrO pe30HaHCa B Tpy6e M 6bmu YKCTO CUHyCOK#lBbHblMK. B OnbITaX 
II0 Tennoo6neHy B nOTOK BO3AyXa BClIOJIb30B3JIHCb HeCKOJIbKO Cl#epBueCKKX TepMHCTpOB. 
noK33aH0, 9TO OCpefiHeHHbtt II0 BpeMeHK KpKTepBi HyCCenbTa XOpOmO KOppeJtKpyeTCB 
aKcnepnMeKTaBbK0 K TeopeTBrecKB C noBombm KpaTepKK PeBHonbnca, onpeneneHKor0 no 
OCpeBHeHHOti n0 BpeMeHH CKOpOCTM, Ii OTHOIlleHUR aMnJIEiTyJ&.l CKOpOCTB HeCTauBOHapHOrO 
KOMnOHeHTa K CTauKOHapHOMy. 

aKCnepKMeHTb4 n0 AeCTanSiOHapHOMy nepeHOCy MaCCbI 6nns BbtnOBHeHbt C nOMOll&blO HCna- 
pemiH Mamx Kanenb BOJ&I A nponrinonoro cn&ipTa B nOTOKe Bosnyxa. Ha6ntonaeTca peao- 
HMpyroqee KOSIe6aHBe ~e~OpMauK&i KaneJfbKH. HaiQeHo, 9To BO Bpem aTor pe3oHaHca 

KpHTepUlf IUepBJ'na BO3paCTaeT npOnOpIJUOHaJlbH0 HeCTaUUOHapHOMJ' KOMnOHeKTy nOTOK3. 


