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Abstract—This paper reports theoretical and experimental results on unsteady heat and mass transfer
from small spherical bodies for small Strouhal numbers. Experiments are done in a stream consisting of
steady and unsteady components. Unsteady flows are generated by an acoustic resonance in a tube and
fluctuate purely sinusoidally. In heat-transfer experiments in an air stream several spherical thermistors
are used and the time-averaged Nusselt number is shown to be well correlated, both experimentally and
theoretically, by means of Reynolds number with time-averaged velocity as its characteristic velocity and
the ratio of velocity amplitude of unsteady component to steady component.

Unsteady mass-transfer experiments are done by evaporation of small droplets of water and prophyl-
alcohol in an air stream. The results are found to be represented by a similar correlating relation to that for
heat transfer. A resonant oscillation of deformation of a droplet is observed due to surface tension and
during this resonance the Sherwood number is found to increase proportionally to the unsteady component

of the stream.

NOMENCLATURE v,  specific weight [kg/m®];
C, concentration [kg/m*]; e,  dimensionless amplitude of the fluctuant
D, diameter of a sphere [m]; velocity, U,/U,;
D,, diffusivity of vapor in the air [m?/h]; 4,  thermal conductivity [kcal/mh°C];
F, surface area [m?]; v,  kinematic viscosity [m?/h];
h,  heat-transfer coefficient [kcal/m?h°C]; p,  density [kgh?/m*];
k,  mass-transfer coefficient [m/h]; o, surface tension [kg/m];
Nu, Nusselt number, hD/A; w, angular velocity [1/h].
Pr, Prandtl number, v/a;
P, pressure [kg/m?]; Subscripts
Q, heat [kcal]; a,  in the main flow;
R, gasconstant [kgm/kg’K]; I,  lead wire;
Re, Reynolds number, UD/v; m, mean value between the surface and the
S,  Strouhal number, ®D/U ; main flow;
Sc, Schmidt number, v/D; 0, steady term;
Sh, Sherwood number, kD/D,; s,  values under a steady state condition;
T, temperature [°K]; v,  values under an unsteady state condi-
t,  time [h]; tion;
U,, amplitude of the fluctuant velocity ~,  time-averaged values;

[m/h]; E
U,, uniform velocity [m/h];
u,  velocity [m/h].

fluctuant values.

1. INTRODUCTION

STuDIES of heat and mass transfer from a sphere
Greek symbols and a circular cylinder have long been considered
a,  thermal diffusivity [m?/h]; one of the fundamental problems in heat and
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mass transfer. But the reports on heat and mass
transfer from small particles are comparatively
few. Experimental studies on this problem were
made formerly by Flossling and Yuge, recently
by Tsubouchi [1].

All these studies were done under a steady
state condition. Under an unsteady condition,
it has been said that, in general, the heat- and
mass-transfer rate increases, but systematic
studies have never been done. Therefore, the
purpose of this paper is to study the effect of an
unsteady flow, which is composed of a uniform
flow and a periodically fluctuating flow approxi-
mated by a sinusoidal wave, on heat and mass
transfer from small spheres. As the first step of
this study, we experimentally and theoretically
investigate the time-averaged heat- and mass-
transfer rate from spheres in such a flow.

Previous works on this problem were done
by Zijnen [2], who vibrated a fine wire of Sp
in the direction of the flow, by Ramachandran
[3], [4] and by Bayley [5]. Their works were
made for a fine wire and the experimental
methods and treatments were various, but only
particular cases were investigated.

In this report, we use spherical particles
and spherical liquid drops and investigate the
effect of the fluctuant velocity field on heat and
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mass transfer and the associated phenomena.
In the experiment, we use thermistors in the
heat-transfer experiment and water and prophyl-
alcohol in the mass-transfer experiment.

2. EXPERIMENTAL APPARATUS AND METHOD
2.1 Experimental apparatus

In this study to generate a large fluctuant
velocity, we use an acoustic standing wave
in a pipe as shown in Fig. 1. The apparatus is
composed of a pipe system and a blower,
which sends a uniform flow. The pipe and a
reciprocating piston fitted on one end of the
pipe, consist of the pipe system. The other end
of the pipe is open and connected to the blower
through the surge tank.

When we vibrate the piston at the frequency
of f= 3c/4L, (where c¢ is the sound velocity
and L is the length of the pipe), we can generate
a standing sound wave which has the pressure
nodes at the open end and at the point of 2L/3
distance from ent entrance. If we open this
point to the free air, there is no effect on the
sound wave. Therefore, we make a hole at the
2L/3 point and send in the steady uniform flow
from the blower at the open end of the pipe and
out at the 2L/3 point. By superposing the
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F1G. 1. Experimental apparatus.
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uniform flow to the standing sound wave, we
can get the flow as shown in Fig. 2 in the vicinity
of the open end of the pipe. It can be seen that
the fluctuant velocity component is exactly
approximated by the sinusoidal wave. The
piston is vibrated by a crank mechanism and
the frequency is changed by a speed change
gear. The resonant frequency can be changed
by varying the total length of the pipe and the
amplitude of the fluctuant velocity can be
changed by the piston stroke. In this experiment,
we vary the total length of the pipe from 35
to 11 m and the piston stroke from 1 to 12 mm.
The frequency range in the experiment is
23-70 ¢/s and that of the fluctuant velocity
amplitude is below 6 m/s. The maximum point
of the velocity amplitude is at the open end and
exit of the flow. We set the measurement
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F1G. 2. Velocity fluctuation.

section at the open end, because its velocity
distribution is almost uniform in the cross
section except in the neighborhood of the pipe
wall The time-averaged velocity is measured
by an orifice-meter which is between the surge
tank and the blower, and the fluctuation of the
velocity is measured by a hot wire anemometer
of constant temperature. A part of the flow from
the blower is divided and lead through the valve
to the hygrometer to measure the water vapor
pressure of the flow.

22 The experiment on heat transfer from
spherical particles

The sketch of the measuring part for heat

transfer is shown in Fig. 3. We use bead type

thermistors as tested spheres and it is held at the

center of the pipe by the lead wires from the

Hot wire anemometer

Thermocouple

Q~———Thermistor

FIG. 3. Test section for heat transfer,

pipe wall. We measure the electric power input
to a thermistor and calculate the total heat input
and the surface temperature. The used ther-
mistors are neither perfect spheres nor similar
figures to each other, therefore as a reference
length, we adopt the diameter of a sphere with
the same surface area as the sample. The
thermistors used in this experiment are shown
in Fig. 4.
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0=1-46 mm F =6-70mm?

0=0-79 F=1-94

0=0-73 F=-67

D=0-245 F=0-189

Fi1G. 4. Thermistors used in the experiment.

2.2.1 The heat-transfer coefficient. The heat-
transfer coefficient A is defined as follows:

Qc = hF(T, — T) 1)

where Q. is heat transferred by convection, F is
the surface area of the sample, and T,, T, are
the temperatures of the surface and the main
stream, respectively. The heat transferred by
convection is obtained by subtracting the heat
by conduction from the lead wires and the
radiant heat of the surface from the electrical
heat input. The surface temperature is calcu-
lated from the measured electrical resistance
of the sample.

When we define the time-averaged term and
the fluctuant term of the heat-transfer co-
efficient as h and k' and those of the surface
temperature as T, and T, the heat transferred
by convection Q. is expressed in the following
form:

Qc=hr+MT,+T -T)F. @

To measure the mean value of O, we take the
time-average of Eq. (2). Then:

Oc={NT, - T)+RT}F. (3)

In this study, the fluctuation of the surface
temperature almost is negligible as the time-
constant of the sample is very large, so h is
obtained from the following equation :

QOc=HKT, - T)F. @

2.2.2 The heat transferred by convection. The
heat transferred by convection Q. is obtained
from the following equation:

Qc=0r— (& + Q&) (5)

where Q, is the heat transferred by conduction
from the lead wires, Qp the heat transferred by
radiation from the surface of the sample and
Q the total heat input.
The total Joule heating Qr is described as:
Qr =086 EI 6)

where I is the electric current and E is the voltage
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between both ends of lead wires. Q is calculated
as follows:

Or=0Cy" e(Ti - T:) (7

where C, is 488 x 1078 kcal/m?h°K and the
emissivity e of the surface is taken as 05.
@, is calculated by the following heat balance
equation:

ton, o
o 0t 0x?
4h, 0-86 I?r,
Moy -2 T 4 aT
i (T, - T) A(nd2/4)( +aT) (8)

where T, is the temperature at an arbitrary
point of the lead wire, «; the thermal diffusivity,
A; the thermal conductivity, r, the electrical
resistance per unit length at 0°C, a the coefficient
of resistance, d the diameter of the lead wire
and h, is the heat-transfer coefficient of the lead
wire. The velocity of the flow is described as
follows:

u="Uy+ U;coswt = Uy(l + ecoswt). (9)

The lead wire is fine, so the heat-transfer
coefficient h, may be expressed as follows:

A
h, = 0-841 E[Re"'('l + ecos wt|)]%3¢

= h, + hy; cos wt
where Re,, is Reynolds number and the sign of
the absolute value means that b, is independent
of the direction of the velocity. Neglecting the
non-linear term and making an approximate
calculation, the following equation is obtained :

(10)

~ — ut
L -T,=(T, - T)e ™™ 1+[ X

1643
#
2 — HoX
+ 16,2 x:lxe (11)

where u = 4h/id, u2 =%h;,/Ad.

Ignoring the small terms of equation (11),
the heat loss from the lead wire Q,, is expressed
as follows:

2

5 (T, — T) pohr (12)
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On the other hand, the heat transferred by
conduction from the lead wire without the
fluctuant velocity Q,, is expressed as:
nd® -

—2—(Tw - ) u4y
where u? = 4h,/Ad and h; is the heat-transfer
coefficient for a steady flow. Finally, Q,, is
represented as follows:

Qi = Qu[(J1 + ecos wt|)° ]2

(13)

(14)

2.2.3 The surface temperature of the sample.
There is a correlation between the electrical
resistance and the temperature of a thermistor
and this relation is obtained from the measure-
ment in a constant temperature box for a
uniform internal temperature of a sample. But
in an experiment of unsteady heat transfer,
the temperature of the sample is not uniform
because of a heat flux to the surface, and the
temperature obtained by the use of the measured
correlation is expected to the temperature of the
core region of the sample. Therefore, we have
to calculate the internal temperature distribution
and the surface temperature by assuming the
Joule heating distribution inside the sample.
Assuming the spherical symmetry of the heating
source, we may define the temperature distri-
bution as the function of the radius and the time.
If the distribution of the heat production g(r)
is independent of the time, the heat balance
equation inside the sample is obtained as
follows:

1aT_1a(rzaT (15)

A A
o 0t rior\ or qu

where o, and A, are the thermal diffusivity and
the thermal conductivity of the sample, re-
spectively. So as to take into account the effect of
the unsteady state, we assume that the heat-
transfer coefficient h and the surface temperature
T,, are given as follows:

} (16)

h = h + hy cos wt
T, — T,= T, + T, cos (wt + 9)
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where J is the phase difference. Assuming a
quasi-steady state as stated later, the heat
transferred from the surface is denoted in the
following form:

Q. = {hT, + %h,T, cos d)
+ (h; Ty + hT, cos &) cos wt

— hT sindsinwt} F 1

where F is the surface area of the sample.
Dividing T into the steady component @,
and the unsteady component &, ; then, for @,
and @1, the following equations are obtained:

do, 1
rdr (r dr) +— 4(r) = (18)
100, 13 2a@1>
a Ot r? Br(r or ) (19)

The boundary conditions at r = D/2 are ex-
pressed as:
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where A, is an arbitrary constant.

AoD*1 | 27
=T T 0 sinZ=;
@0 0 + a + 47[2)% " sin D (22)
where
1
Ay = o7 {hT, + $h, T, cos 6} F. (23)
From equation (19),
A
e, = —[e"'cos(wt + nr + A4)
— e "cos(wt — nr + 4)]
n= \/—— (24)

The constants A, 4 and 6, are obtained by
following simultaneous equations, which are
obtained from the boundary conditions.

0,=T + T, )
0 - _ NS —
—i(?r)—hTw%thlcosé hTy + hT,cos 8 = X RT,siné = Y
(25)
0, =6Técos @t T (20) At2R =D,
(%)
o Tcosé—A{"R R+ 4 ]
= (h, T, + kT, cos 8) cos wt 16050 = g cos(nR + )
— T, sin & sin wt. J — e "Rcos(nR — 4)}
Taking into consideration the heating character- > (26)
isti i i : A .
istics of the therm1stor,{;1(r) is z;ssumed asfollows T, sind = 2 (e sin (1R + 4)
=20, "
qlr) = sin o-r (21) + e"™Rsin (nR — 4))
\
X= [R—A — e "®)cosnR — r—u}éé {(€"™® + e "®)cos nR — ("% — e "F)sin nR}] cos 4
ni,A .
+ [ —A "R} e~ " {— (R — e "®)sinnR — (€"* + e "®)cos nR}] sin A
R? L, 27)
Y = [ /1—'—4 e"R + e n}{l — (€"® 4+ e "®AcosnR — ("’ — e~ "F)sin nR}]cosA
[%— — e ™)cosnR — n—'}éﬁl{(e"‘* + e ") cosnR — ("R — e7"R)sin nR}] sin 4 J
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Assuming a quasi-steady state, the maximum
values of T and 6 within the region of this
experiment are

T,=017T, &= 105" (28)

Therefore, the effect of the second term of
equation (3) is less than 2 per cent and neglibible.
Denoting the core temperature of the sample
as T, the relation between T, and T, is found
from equation (22). Using the value of T,
obtained from the resistance, we can get the
time-averaged surface temperature T, as:

1 hD 1
e IR
For the steady state:
1 hD 1
T, - 3;‘(1 +E)‘ T,-1, 0

where h, is h for u = U,. Using equation (42)
resulted from this experiment, the relation
between h, and h is expressed as follows:

), D
=42 a 203

where a, is the value dependent on ¢ only,

(31

2.3 The experiment of mass transfer from liquid
drops

In the case of mass transfer, we need to get
the mass flux of the evaporation and the con-
centration of the vapor molecule at the surface,
corresponding to the heat flux by convection
and the surface temperature. The apparatus
for mass transfer is shown in Fig. 5. A liquid drop
is fixed at the center of the pipe by the 30
Cu—Constantan thermocouple. The vapor con-
centration on the drop’s surface is obtained by
measuring the temperature of the liquid drop
by a thermocouple. There are two windows,
one over and the other below the liquid drop.
The variation of the diameter with time is
measured at regular intervals by a photo-
microscope. A stroboscope is used to light the
drop.

5717
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FiG. 5. Test section for mass transfer.

In this experiment, water and prophyl-
alcohol are used as liquid and each physical
constant is obtained from the International
Critical Tables. The liquid drop is not a perfect
sphere but can be sufficiently treated as a sphere.
Therefore, we use the average diameter as the
reference- length. An example of the variation
of the liquid drop diameter with time shown in
Fig. 6.

2.3.1 The mass-transfer coefficient. The mass-
transfer coefficient k is generally defined as
follows:

1, = kF(Co — C,) (32)

where I is the flux from the drop, F the surface
area and C,; and C, are the concentrations on

3-0

ml'l'l2

rat o

2
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t, min

Fi1G. 6. Variation of liquid drop diameter with time.
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the surface of the drop and in the main flow,
respectively. Assuming that the vapor can be
treated as an ideal gas and the temperature
difference between the surface of the sample
and the main flow is small, then C, = Py/RT,
and C,= P/RT, are calculated from the
pressure of the main flow and P, at the surface
of the sample, while R is the gas constant of the
vapor and T, the mean absolute temperature
between the main flow and the surface. If D
is the diameter of the liquid drop and y is the
specific weight of the liquid, we have

T
Ij‘ = - d (g D3'))>/dt
Substituting these equations into Equation (32),
the mass-transfer coefficient k is expressed as
Ry T,

follows:
_ (_ E*B)
T 2AP, - P) dt /'

Total pressure P around the liquid drop remains
constant, so the pressure distribution of the air
is opposite to that of the liquid vapor. The liquid
drop supported by the thermocouple is not a
perfect sphere, so we must check this effect in
the calculation of the mass transfer coefficient.
Regarding the shape of the liquid drop as a
rotating ellipse and varying the ratio of the
each axial lengths a/b under a constant volume
condition, the variation of the mass transfer
coefficient is within 1-0 per cent for a/b between
0-8 and 1-2. When the liquid drop is not under a
resonance condition, as denoted later, a/b
in this experiment is almost 1-0, so the effect of
it can be ignored.

In the case of mass transfer as well as heat
transfer, the time-averaged value of equation
(33) is important. Then the time-averaged
mass-transfer coefficient is obtained as follows:

s D)
dt/

Z(P o P u)
2.3.2 The partial pressure of the liquid vapor
in the main flow and at the surface of the liquid

k (33)

k= (34)
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drop. It is necessary to know the partial pressure
of the liquid vapor at the surface of the drop and
that in the main flow. Vapor is in the saturated
condition at the surface, therefore, the vapor
pressure at the surface depends only on the
surface temperature. The liquid drop is supported
with the two lead wires of the thermocouple
and changing the diameters of the wires, we get
the same temperature, so it is known that the
temperature distribution inside the liquid drop
is almost uniform.

This phenomenon can be explained by the
existance of the convective flow inside the liquid
drop. Therefore, the temperature measured by
the thermocouple fixing the liquid drop is
used as the surface temperature of the drop.

The vapor pressure in the main flow is as-
sumed to be zero for prophyl-alcohol, but for
water we must measure it accurately, and the
following method is used. Ten pairs of Cu-
Constantan thermocouple of 100 p are con-
nected to each other in series on a mica plate
with a 0-2 mm thickness and one end of the
thermocouples is wet by covering with gauze and
the other is dry and exposed to the air flow.
When the dry and wet bulb temperature are
described as 6 and 6, respectively, the vapor
pressure in the air is calculated from the
Sprung’s equation:

P,= P, — AP(A - 8,)/755 (35)

where P, (kg/m?)is the saturated vapor pressure
at the temperature 6,(°C) and P (kg/m?) is
the total pressure. The velocity is more than
3 m/s, so we adopt 4 = 0-5.

3. THE EXPERIMENTAL RESULTS
We transform the experimental results into
nondimensional forms. For heat and mass
transfer in an unsteady flow, dimensionless
transfer coefficients are generally expressed as:

Nu = f(Re,, Pr, S, &) (36)
Sh = f(Req, Sc, 8, ¢) 37

where the Nusselt number is Nu = hD/4, the
Reynolds number Rey, = UyD/v, the Strouhal
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number § = wD/U, the ratio of the fluctuant
velocity component to that of the steady one
& = U,/U,, the Sherwood number Sk = kD/D,
the Schmidt number Sc = v/D, and the Prandtl
number Pr = v/a. In this experiment the Prandtl
number is 0-72 for the air and the Schmidt
number is 0-60 for water and 1-60 for prophyl-
alcohol. The physical properties are used at the
average temperature T,, = (T,, + T.)/2 in equa-
tions (36) and (37).

3.1 The experimental results for steady states
In order to make sure of the accuracy of this
experimental method, we first make experi-
ments under a steady state condition. These
results are shown in Fig. 7. We take the value

15—

Nug -2:0=0:55 Pr 3 Re"2

Shy—2:0=0-55 Sc'3Re'"2

the following emperical formula for these results :

} (38)

3.2 The experimental results for unsteady states

We make the experiments for an unsteady
state condition following the experiments for
the steady state condition. As the velocity u
varies as

Nuy = 20 + 055 PriRe}
Shy = 20 + 0:55 Sc* Re}.

u=Uy,+ U;coswt = Uy(l + £cos wt),

we use the Renumber based on the time-averaged
velocity u as the reference velocity. The relation
between Re and Re, = UyD/v is expressed as

(o]
&
o
D (J
2 '.’00 ® Thermistor
.o
(]
sl o Water
o/'/
o
/ a Prophy! - alcohol
I L 1 i
0 5 10 15 20

i
Pr3re? sc

b 175

/s
3{?!

FI1G. 7. Steady experimental results for heat and mass transfer from spheres.

Nug or Shy as the vertical axis and the value
PriRe} or Sc*Re} as the horizontal axis. These
experimental results coincide very well with
those of Ranz and Marshall [6] and Tsubouchi
[1] made by a similar method. As it is well known
that the Nusselt number and the Sherwood
number are 2-0 for the small Re region, we take

follows:
Re = Reo[%jﬂ + £cos 9|d6] = Regh?  (39)
0

where the absolute value inside the integral
sign means that heat transfer is independent
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of the velocity direction. The value of b, is
e<l, b=1

given by
e>1, B= Ez[sin“‘—1+ NG 1)]. (40)
€

In the region where the S number is very small,
at every moment the steady state is considered
to be instantly reached, i.e. it may be assumed
to be a quasi-steady state. Then, the instant-
aneous Nu number Nu,; is expressed by use
of the equation for the steady state as follows:

Nu,; — 2 = mRe§(|1 + ecoswt|)r.  (41)

Then, the time-averaged Nu number is given by
Nu, — 2

- mRea[}r[(u + acos@[)*de:l

= mRej}a, 42)

where the value g, is calculated from the follow-
ing equation.

7o is the angle at the point where the velocity
changes its sign and is given by

To == + sin" i1
°7 2 g
Replacing Re, with Re by using equation (39),
equation (42) is expressed as follows:

Nu, — 2 = mRe"%

0

(45)

Nu is obtained from the following equation by
using equation (38) for the steady state:

Nu—2=mRe . (46)
From equations (45) and (46):

Nu, -2 a,

T (47)

where a, and b, are given by equations (43)
and (40), respectively. In the case of mass
transfer, similar analysis can be adopted. By

e <1, ao=1+2((—2_k1-;%(41<—3)ua“9f2—15-!1!ﬁ |
e=1, a0=2\/(2)/7_t
e> 1 ag= 2\/(s+1z0 2\/(8——1)[;[ E}
2/(e+1)z (2K — ( )(-1)"1 [ @
e+ 1) 2%
2\/(3—1)221(-3)”
HLERN )
where
’”Z( (2rK>8m(;§(K))”‘”K<ZII<<>%O |
r (44

_ 2K\ sin 1o(K — 1)
J“Z(r) K-n

r=

C)G-2)
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replacing Nu, and Nu of equation (47) with
Sh, and Sh respectively, we obtain

Sh, -2 4o

Sh—2 by
In Fig. 8 the experimental results of heat transfer

from sphere are shown, where the horizontal
axis is ¢ and the parameter is SRe,. No variation

J(SRe,)
o 76 a 2t
1-O bu, ¢ 62 A5 07
N 0 35
[ ]
P o
oo ] e
33 o " s O
=l= M ¢
o9k I
L]
| | i ]
4] 10 2:0 30 40

FiG. 8. Unsteady heat transfer with uniform velocity.

of experimental values with SRe, can be seen.
The solid line shows the theoretical value ex-
pressed by equation (47) which is calculated on
the assumption of the quasi-steady state. When
¢ increases, ay/b,, in equation (47) tends closer to
a constant value. At the limiting case when
&£ — o0, we have no steady component and
Nu, is given by the following equation from
equation (47):

Nu, = 2 + 0478Re". (48)

The results are shown in Fig. 9 where the open
circles show the measured results for the perfect
sinusoidal waves, on the other hand, the solid
circles are the results for the waves disturbed
near the maximum amplitude, when the increase
of the velocity amplitude brings the high fre-
quency waves. Thus in the perfect sinusoidal
wave, the theoretical values and the experi-
mental ones coincide very well, so the assump-
tion of the quasi-steady state is valid in this
experiment. When we have only the fluctuant
velocity component, it is theoretically proved
that from the stand point of the analysis of flow
and heat transfer the case of the fluctuant flow
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— |/
Nu, -2:0=0-478 Ra 2

| |
10 50 100 500

Pe (€-=00)

FI1G. 9. Unsteady heat transfer without uniform velocity.

field is the same as that when the flow is stopped
and the sample is in oscillation. The results of
our analysis coincide well with the measured
results using the fine vibrating wire by Mabuchi
[7], when the effect of natural convection is
negligible. The detailed study about it will be
reported in our next paper.

The results of mass transfer from a liquid drop
are shown in Fig. 10. The solid line is calculated
value using the assumption of a quasi-steady
state. The effect of the Sc number is not seen.
As the oscillation of the liquid drop becomes
intense for & > 1, the accurate experimental
results are not obtained.

Anaccurate analysis of the effect of the velocity

ik s
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02~ 04
04~ 06
06~ 08

> a o o

-2

-~ ©oo4 Water
$\$\¢+ #e®A prophyl alcohot

3
N

Fi1G. 10. Unsteady mass transfer with uniform velocity.
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fluctuation on the time-averaged Nu number
has never been done. However, the local Nu
number Nu,y in an unsteady state along the
surface of a body is written in terms of Nu
number in a steady state, as follows for
e<1,8<1:

Nu,y = Nuy[1 + O(e?) + O(*S3)
+0EH+....] (49
where X is the distance from the stagnation
point along the surface, Sy = wD/V(X) is the
local Strouhal number, ¢ is non-dimensional
amplitude of the fluctuant velocity and V(X)

the velocity outside the boundary layer at
X . V(X) is expressed as follows:

Vv X X\?

Within the Re number region of this experiment,
V is approximated by the first term of equation
(50), so Sy is written as follows:

a)D; le_ S
vV " C,U, C,

(50)

Sy = (51)
where C, is equal to 3-0 for the sphere. In this
experiment, Sy is smaller than 0-2, therefore,
the terms containing S, of equation (49) are
negligible. This is the reason why the experi-
mental values are independent of Strouhal
number and almost agree with the theoretical
value calculated under the assumption of the
quasi-steady state.

4. THE VIBRATION OF THE LIQUID DROP

The experimental results of mass transfer
from liquid drops are obtained under the con-
dition that the liquid drop is spherical. At a
certain frequency of the fluctuant velocity, a
liquid drop makes a transforming oscillation
as shown in Fig. 11. The liquid drop has a
natural frequency of transforming vibration
caused by surface tension in a gas or in a different
liquid. It seems that the liquid drop shown in
Fig. 11 makes a resonance of the natural fre-
quency with that of the fluctuant velocity.

YASUO MORI, MIKIO IMABAYASHI, KUNIO HIJIKATA and YUZO YOSHIDA

10 mm

Fi1G. 11. Droplet transformation in resonant state.

4.1 The natural frequency of the liquid drop

We take an origin of a co-ordinates at the
center of the gravity of the drop shown in Fig. 12.
We assume that the velocity potential ¢ varies
in the following sinusoidal way of angular
velocity w.

N
Q

F1G. 12. Model of transforming vibration of droplet.

¢ = [x* — 1y + z})] acos wt. (52

When x,, yo, Zo are the coordinates of the surface
in the case of no vibration, the velocity and the
displacement in x, y, z direction are expressed as:

0 dx
U= P 2ax cos wt =4

oy
= Xo €Xp)~_~sin wt

(53)

(54)
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dy
V= _q_& = —aycoswt = (55)

dt
y = Yo €Xp {— — sin wt} (56)

o¢p dz
=g, = —azcos ot = m (57)
a .
zZ = zgeXp {— s wt}. (58)

By using the relation; x2 + yZ + z2 = R and
replacing (a/w) sin wt = g(w), from equations
(54), (56) and (58), the following equation is
given:

x2 y2 22

— 2

In order to obtain the potential energy due to
the surface tension, we calculate the surface
area F of the liquid drop from equation (59).
By making the transformation of the variables

below,

x=Rye¥sing, n=Roe ?cosep (60)

the surface area is given by:
n/2

F=2zn{

~nf2

x cos ¢ do

R3¢ J(cos? ¢ + e~ %9 sin? )

= 2R3 e [e'“ _sin”t 0 - 6_69)]. (61)

J(1 = e™%)

The deformation of the liquid drop from the
sphere being small, the potential energy V
due to the surface tension o is given as follows:

V = oF = 4nR%0[1 + $4?]. (62)
The kinetic energy of the liquid drop T; is
represented as:
=2 @+ v?+w)dxdydz  (63)
2w
_ 2mpa*Rjcos? ot

15 [2e72 + 4¢%]

(64)

where p is the density of the liquid. Expanding
equation (64) in power series and taking the
largest term, T; is given by

4nR3pa’cos? wt

T, = 5

(65)

As T, + V is constant, the time derivative
d(T; + V)/dt vanishes. Then the natural angular
velocity of natural transforming vibration of the
liquid drop is given by the following equation:

2_80’

If one end of the liquid drop is fixed, the
velocity of the x direction is equal to equation
(53) added to the velocity of the center of the
gravity and is given as:

w = 2(rsin ¢ + R,)e®acos wt.

By making the same calculation as before, the
kinetic energy in this case is expressed as follows:

52nR3pa’cos? a)t

Iy= 05

(67)

Then, the angular velocity of the natural vibra-
tion is given by

,_ 1850 148¢
o = R, D> (68)

In the experiment of mass transfer for an
unsteady flow, the diameter of the drop dgcreases
with time even in a resonance state. Therefore,
we get the relation between the mean diameter
before and after the resonance state and the
frequency of the vibration of the drop, and show
it in Fig. 13. The solid line is the calculated value
by equation (68). The difference of the experi-
mental values and the theoretical values is about
ten per cent. If we think the fact that in the theory
the effect of the supporting wires is neglected,
that is, the liquid drop is assumed to be sup-
ported at one point, the agreement between the
theory and experiment is considered to be
satisfactory.
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Analytical result

wD*:148(0/p)

|
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F1G. 13. Frequency of resonant vibration of droplet.

4.2 The mass-transfer coefficient at the resonance
state

The increase of the average mass-transfer
coefficient is obtained when the liquid drop
makes the resonant transforming vibration
stated above. These results are shown in Fig. 14.
The horizontal axis is eRe, = U D/v (U, is
the amplitude of the fluctuant velocity), so
called the Re number of the vibration, and the
vertical axis is represented by a,/b,. The results
show that a,/b, is independent of the Re
number Re, and increases proportionally to
¢Re,, ie. the Re number of the vibration in

16 o’
14—
T Re,
115
° 50
12—
® 100
L]
1-0l ! 1 1
o 20 40 60
eRe=U,0v

FiG. 14. Unsteady experimental results for mass transfer
from resonating droplets.

contrast with the non-resonance state. This is
due to the fact that the flow around the liquid
drop is changed and the surface area of the drop
increases by the vibration of the drop.

5. CONCLUSION

This paper makes the experimental and
theoretical studies on heat and mass transfer
coefficients from small spheres for an unsteady
flow, in which the velocity u is vibrated as
u=Vy(l + ¢coswt) and the following con-
clusions are obtained :

(1) The experimental results of the time-
average Nu number of heat transfer for the
unsteady flow coincide well with the calculated
values under the assumption of the quasi-
steady state. In this experimental region of the
Strouhal number S, there is no variation of the
Nu number by the S number, and the Nu
number only depends on the Re number taking
the time-average velocity as the reference and
the dimensionless velocity amplitude & This
relation can also be adopted in the case where
there is no uniform flow, only the fluctuant
velocity. The time-averaged Nu number Nu,
is generally smaller than the Nu number Nu of
steady heat transfer for the time-averaged
velocity u. When the amplitude of the fluctuant
velocity is equal to the uniform velocity,
(Nu, — 2)/(Nu — 2), (= ag/b,) is the minimum
value 0-900, and when there is no uniform flow
and only the fluctant velocity, it is 0-958.

(2) The Sherwood number for mass transfer
from the liquid drop of water or prophyl-
alcohol has the same relationship as that of the
Nu number, it only depends on Re, and e

(3) It is theoretically and experimentally
verified that the transforming vibration of the
liquid drop yielded during the experiment under
the unsteady state condition is caused by the
resonance; ic. the coincidence of the natural
frequency of the liquid drop due to the surface
tension with the frequency of the fluctuant
velocity. Also, in such a case, the mass-transfer
coefficient is discovered to increase with the
Re number of the vibration.
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Résumé—Cet article expose les résultats théoriques et expérimentaux sur le transport de chaleur et de
masse instationnaire  partir de petits corps sphériques pour de petits nombres de Strouhal. Des expériences
sont faites dans un écoulement ayant des composantes permanente et instationnaire. Les écoulements
instationnaires sont engendrés par une résonance acoustique dans un tube et fluctuent d’une fagon pure-
ment sinusoidale. Au cours d’expériences de transport de chaleur dans un écoulement d’air, plusieurs
thermistances sphérigues sont utilisées et I’on montre que la moyenne temporelle du nombre de Nusselt
est bien corrélée, A la fois expérimentalement et théoriquement, au moyen du nombre de Reynolds basé
sur la moyenne temporelle de la vitesse et du rapport de 'amplitude de vitesse de la composante instation-
naire 4 la composante stationnaire.

Les expériences de transport de masse instationnaire sont effectuées par évaporation de petites goutelettes
d’eau et d’alcool propylique dans un écoulement d’air. On trouve que les résultats sont représentés par
une corrélation semblable & celle du transport de chaleur. On observe une oscillation résonante pour la
déformation d’une gouttelette due A la tension superficielle et I'on trouve que pendant cette résonance le

nombre de Sherwood croit proportionnellement a la composante instationnaire de 1’écoulement.

Zusammenfassung—Diese Arbeit berichtet iiber theoretisch und experimentell gewonnene Ergebnisse
bei instationdrem Wirme- und Stoffiibergang von kleinen kugeligen K6rpern bei kleinen Strouhal-Zahlen.
Die Experimente wurden in einer Strémung mit stationiren und instationdren Komponenten durchgefiihrt.
Die rein sinusformig schwingende instationdre Strémung wurde durch akustische Resonanz in einem
Rohr hergestellt. Bei den Wirmeiibergangsexperimenten in einem Luftstrom wurden kugelige Thermi-
storen verwendet; fiir die zeitlich gemittelte Nusseltzahl ergibt sich sowohl theoretisch als auch experimen-
tell eine klare Abhingigkeit von der Reynolds-Zahl, gebildet mit der zeitlich gemittelten Geschwindigkeit,
und von dem Verhiltnis der Amplitude der instationdren Geschwindigkeit zu deren stationéirem Anteil.

Die instationdren Stofftransportversuche wurden durch Verdampfen kleiner Wasser- und Prophyl-
Alkoholtropfchen in Luft durchgefiihrt. Es zeigte sich, dass sich diese Ergebnisse in einer dem Wiarmeiiber-
gang dhnlichen Beziehung darstellen lassen. Dabei wurde eine Deformation der Tropfchen nach einer
Resonanzschwingung beobachtet, die durch die Oberflichenspannung verursacht war. Wéahrend dieser

Resonanz wichst die Sherwood-Zahl proportional dem instationéren Anteil der Stromung.

AnHOTAHA—DB CcTaThe NPUBORATCS TEOPETHHYECKHe M 9KCHEPHMEHTAJbHHE Pe3yJbTATH IO
HeCTAallMOHAPHOMY TeIJIO-M MAacCCOIePeHOCY OT HeGONbMIMX CcepHUYECKHX Tel IPH MAIBIX
sHadeHusAx kpurepus Crpyxand. ONHTH HPOBOAMIMCL B IOTOKe, COCTOSAIIEM M3 CTALMOHAD-
HOTO U HECTAMOHADHOrO KOMIOHeHTOB. HecTaluuoHapHHE IOTOKH TeHEPHPOBAJIMCH C
MOMOINBI0 AKYCTHYECKOTO Pe30HaHca B TpyGe M GHUIM YUCTO CHHYCOMJAJIBHHMM. B ommrtax
IO TeII00GMEHy B IOTOKe BO3[yXa HCHOJB30BAINCH HECKOJNBKO CPepUYeCKHUX TEPMHCTPOB.
ITokasano, yro ocpefHeHHH Mo BpeMeHM KpuTepuit Hycceanra xopoio Koppeaupyercs
BKCIIEPUMEHTANbLHO U TeOPeTHYECKH C IIOMOIIbI0 KPUTepHA PeltHONBACA, OmpeleleHHOTO IO
OCpegHeHHO} MO BpeMeHM CHOPOCTH, M OTHOLIEHUA AMIUIMTYIR CKOPOCTH HECTALMOHAPHOrO
KOMIIOHEHTA K CTAIlMOHAPHOMY.

OKCHEPUMEHTH N0 HeCTALMOHAPHOMY MEPEHOCY MACCH GBHIIM BHITOJHEHH ¢ MOMOILBIO MCHa-
PeHHA MAJHIX KaNeJb BOAH M IPONMMJIOBOTO CIHUPTA B MOTOKe Bo3gyxa. HaGmopaercsa peso-
Hupyiomee Kofebanne mefopmanuu Kameibku. HaltieHo, 4To BO BpeMA 2TOro pe3OHAHCA
kputepuit lllepsyaa BoapacraeT NpoNMOPHHOHAIBHO HECTALMOHAPHOMY KOMIIOHEHTY IOTOKA.



